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On the basis of the virial theorem for a uniform scaling process of a polyatomic 
system, the total energy and its gradient are quantitatively related with the 
behavior of the electron density in momen tum space through the kinetic 
energy of the system. For attractive and repulsive interactions, the behavior of 
the momen tu m  density distribution and its effect on the stabilization energy 
and the interatomic force are examined. Some guiding principles are deduced 
for their interrelation. The results are used to clarify the role of kinetic energy 
in chemical bonding. Possible energy partitioning in this approach is also 
mentioned.  
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1. Introduction 

In molecular quantum mechanics, the electron density p (r) in the coordinate ( r - )  
space has been utilized as a basic physical quantity in understanding and predic- 
ting various nuclear displacement processes [1]. Specifically, the He l lmann-  
Feynman (H-F)  theorem [2] connects the behavior  of the electron density with the 
quantum-mechanical  force acting on a nucleus in an intuitive and quantitative 
manner  [1, 3, 4]. The integration of the force also enables us to relate the energy 
of the system directly with the density behavior  (integrated H - F  theorem [5]). 

However ,  it is shown in quantum mechanics that the position r and the momen-  
tum p of a particle are variables which can equally describe states of systems under 
the commutat ion condition [r, p] = i [6]. Therefore,  the use of the electron density 
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p(p) in the momentum ( p - )  space, instead of p(r),  is expected to give a new or an 
alternative development  for density studies of nuclear displacement processes 
such as molecular geometries, molecular vibrations, chemical reactions, and 
long-range forces. 

Theoretically, the momentum density p(p)  is derived from the p-space wave 
function obtained either by the direct solution of the Schr6dinger equation in the 
p-representation [7, 8] or by the Dirac transform of the r-space wave function (see 
[9-12] for the representation theory). The properties of the p-representation of 
molecular electronic wave functions were first investigated by Coulson and 
Duncanson in the early 1940s [13]. The momentum density p(p) does not mean a 
distribution in the actual three-dimensional molecular space. Then, it is a merit of 
the p-space approach that the density distribution is free from the nuclear 
framework: for example, p(p) is expected to throw its major  part into the region 
around the origin even for large molecules in their ground and low excited states. 
The momentum density also has the advantage that it is closely related with the 
experimental Compton profiles of atoms and molecules [14]. 

When the momentum density p (p) is given for a system, it is then necessary for our 
purpose to connect it with the energy or the force of the system in a simple and yet 
quantitative manner. In the p-space, the Coulombic potential operator  between 
nucleus A and electron i, --ZA/lri --RAI, is given by 

I dp [p1-2 exp (ip. I~A) exp ( p .  Vpi), ~ ( Z A /  2 ~2 )  

and the corresponding H - F  force operator,  ZA(ri --RA)/lri --RA[ 3, by 

f dpp[p[ -2 exp (ip. RA) exp ( p .  Vp,), ~ i ( Z A ~  2 ~ 2 ) 

where ZA and RA a r e  charge and position of nucleus A, respectively. The physical 
picture of these operators is not clear. Calculations of these expectation values 
require not only p(p) but also p(p'lp), the off-diagonal elements of the momen- 
tum density matrix. On the other hand, the kinetic energy operator  becomes 
multiplicative lp12/2 and p (p) is sufficient for its expectation value in the p-space. 

From this motivation, we here investigate a relationship between the momentum 
density and the total energy (or the force) through the kinetic energy of a system. 
As we have developed in r-space by the use of the H - F  theorem [37], we are 
interested in a quantitative study of interaction processes based on the electron 
density in the p-space. In the next section, the basic equations in this approach are 
derived and summarized from the virial theorem for a uniform scaling process of 
polyatomic systems. In Sect. 3, stabilization and destabilization (or attraction and 
repulsion) of a system are discussed in terms of the behavior of momentum 
density. Some guiding rules are deduced for the relation of the density behavior to 
the energy and force. In Sect. 4, a possible energy partitioning is briefly mentioned 
based on the decomposition of momentum density. In Sect. 5, the present 
approach is applied to the kinetic explanation of chemical bonding. The 
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reorganization of momentum density during the bonding process is discussed as 
well as the corresponding behavior of the coordinate density. 

2. Theoretical Ground 

The virial theorem for a polyatomic system is given by [15] 

T(R) + E (R  ) + Y. RA[OE(R)/ ORA] = 0, (1) 
A 

where T is the kinetic energy, E the total energy of the system, and R -- {RA} the 
space coordinates of nuclei. If we consider a uniform scaling process of an 
arbitrary conformation Ro, 

Rs -- SRo, (2) 

Eq. (1) is reduced to 

T(s) + E(s) + s[dE(s)/ ds] = 0, (3) 

where the scale factor s varies from 0 (united atom limit) to oo (separated atoms 
limit). Then the solution of this equation is [16, 17] 

t *  o o  

E(s) = (l /s)  Js AT(t) d t -  T(oo), (4) 

where 

AT(s) ~ T ( s ) -  T(oo), (5) 

and T(oo) can be replaced by -E(oo). The corresponding force F is given by 

F(s) = -dE(s ) /ds  
oc~ 

Eqs. (4) and (6) are the first set of the desired result which connects energy and 
force with kinetic energy. Alternatively, application of the kinetic field normal- 
ization relation [17] 

r  

( l / s )  Jo AT(t) dt= v.,,(s) (7) 

to Eqs. (4) and (6) yields the second set of equations, 

i0 s E(s) = - ( l / s )  T(t) dt+ V..(s), (8) 

F ( s ) = - ( 1 / s  2) {I0 s T ( t ) d t - s T ( s ) - s V . . ( s ) } ,  (9) 

where V.. means the nuclear repulsion potential. Eq. (8) has been also derived by 
Kn611 [18]. If the equilibrium geometry seRo and energy E(se) (=-T(se ) )  a r e  
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known, the third set of equations is obtained as 

E(s)=(1/s){IsS~ T(t) dt-seT(se)}, (10) 

F(s) = (1/s 2) r ( t )  d t - s e r ( s , ) + s r ( s )  , (11) 

where the relation F(s,)= 0 has been used. Borkman and Parr obtained the 
corresponding formula for diatomic molecules [19]. 

All the three sets of equations show that one can calculate E(s) and F(s) from the 
knowledge of T(s). Since T(s) is simply related with the electron density in the 
p-space, these equations permit us to discuss E(s) and F(s) based on the behavior 
of the momentum density (see next section). Of these equations, the first (Eqs. (4) 
and (6)) and the third (Eqs. (10) and (11)) sets have a merit that there is no need to 
consider the additional nuclear repulsion. The nuclear repulsion has been 
replaced with the integral term of AT by Eq. (7). However, it is a demerit of the 
present approach that not only T(s) but also [ T(s)ds is required for the 
calculation. From the range of integration, the first set is useful for the study of 
interaction processes starting from separated atoms. Similarly, the second set may 
be advantageous in examining the change from the united atom, and the third set 
the change around equilibrium conformation. Since we are mainly interested in 
the process of molecular formation from separated atoms, we proceed with our 
study using the first set of equations in the following sections. 

The present equations may be applied to any process of nuclear displacements in 
any molecular systems (including solids). Let us consider a (totally) symmetric 
stretching mode described by a symmetry coordinate such as S =~B RaB (A 
means the central atom, B the terminal one, and RAB the bond length). In this 
case, the path of nuclear displacements (R) coincides with the path of uniform 
scaling (Rs) (Fig. la). All the intermediate conformations between the initial and 
final geometries (Ri and R r) correspond to some s values on the path Rs with 
common reference conformation R0. Therefore, the behavior of the momentum 
density along the path Rs (which will be discussed in the next section) is nothing 
but the behavior along the path R. For other modes (such as antisymmetric 
stretching and bending modes), however, the two paths R and Rs are generally 
different (see Fig. lb). The points on R lie on different Rss and have different R0s. 
We have to employ different R~s to calculate the energies of conformations which 
are represented by the crossing points of the paths R and Rs. Thus the energy of a 
given conformation is obtained from the momentum density, but the guiding rules 
for the density behavior (see next section) cannot be directly applied to the latter 
case unless the two paths are almost parallel. 

The three sets of equations summarized above hold for both the exact and 
approximate momentum densities insofar as their parent wave functions satisfy 
the virial theorem. If the theorem is not satisfied, the resultant equations are 
only approximate. In this case, an appropriate rescaling procedure (such as 
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P ,  o,,uclearO,soloconls',R  
= Path of Uniform Scaling (R s) 

(a) Symmetric Stretching Mode 

Path of Nuclear Displacements (R) 7 
/ 
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(b) Other Modes 

Fig. 1. Schematic representations for the path of nuclear displacements (R) and the path of 
uniform scaling (Rs) 

optimization of orbital exponents) is necessary to make the equations valid [20]. 
This point is similar to the case of the H - F  theorem, where the theorem holds 
only for the stable or floating wave functions [16, 21, 22]. 

3. Behavior of Momentum Density 

Using the momentum density p(p) ,  we can rewrite Eqs. (4) and (6) as 

AE(s)-- E(s)- E(oo) 

= I (p2/2) Aft(p; s) dR, (12) 

F(s) = (l/s) I (P2/2)Ap(e ; s) de, (13) 

where p =]p]. Here,  we have introduced two modified density difference 
functions AI5 and Aft, which are defined as 

P oo 

Aft (p; s) ~ ( l / s )  J~ Ap (p ; t) dt, (14a) 

AI~(p; s) = AtS(p; s) + A~ (p; s), (14b) 

in terms of the (usual) density difference 

Ap(p; s)=-p(p; s)-p(p; 00). (14c) 

These three density differences must satisfy 

I A~(p; s) dp= I Al~(p; s) dp= I Ap(p; s) dp=O (15) 

in order to conserve the number of electrons. 
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Based on Eqs. (12) and (13), we can derive some guiding principles for the effect of 
the density reorganization in the p-space on the energy and force of a system. 
Taking the weighting f a c t o r  (p2/2) into account, we see in Eq. (12) that the 
stabilization of the system (i.e. AE < 0) occurs only when A# decreases in a larger p 
region and increases in a smaller p region under condition (15). Namely, A# must 
contract to stabilize the system. At stable equilibrium conformation, this contrac- 
tion should be maximum since AE is (locally) minimum at this point (Fig. 2a). For 
the destabilization of the system (AE > 0), the situation is opposite and hence 
expansion must be observed in A#. If the system is monotonously destabilizing, 
the degree of the expansion will also increase monotonously (Fig. 2b). If there is 
unstable equilibrium (i.e. local maximum of AE), the expansion is maximum at 
this geometry (Fig. 2c). The critical point (go) for the contraction and expansion of 
A# is the point of AE = 0. Consequently, the contraction and expansion appearing 
in the distribution A# play a determinative role for the density-energy relation in 
the p-space. 

Similarly, we can derive guiding principles for the density difference At5 from Eq. 
(13). Since s is non-negative, it is seen that an attractive force (F < 0) results only 
when At5 shows contraction, whereas a repulsive force (F > 0) results only when 
At~ shows expansion (see Fig. 2). The critical point (go) of these density behaviors is 
the point of F = 0, i.e. equilibrium conformation. Maximum reorganizations in At5 
will be found at points of inflection in the AE curve, because the forces are 
extremum at these points. The contraction and expansion in At5 are critical for the 
density-force relation in the p-space. When compared with the A#-AE relation, 
the present A~5-F relation seems more convenient since the critical point gc is 
identical with the equilibrium point se. The concept of the contraction and 
expansion of At5 in the p-space may correspond to the concept of the electron- 
cloud preceding and (incomplete) following [23], which is a guiding principle in 
the r-space for the density reorganization during interaction processes. It should 
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Fig. 2. Schematic representations of curves for energy (AE), force (F), kinetic energy (A T), and 
corresponding density reorganizations A#(p), At~(p), Ap(p). (a) Attractive interaction with 
stable equilibrium. (b) Repulsive interaction with no equilibrium. (c) Repulsive interaction with 
unstable equilibrium 
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be stressed that in the present approach, there is no need to consider the nuclear 
repulsion separately, different from the H-F  treatment of the electron density in 
the r-space. 

In Eqs. (12) and (13), the density difference Ap does not appear explicitly. 
However, its behavior during interaction processes is deduced from those of Af 
and Aft through the relations (14a) and (14b). Since Ap (p; s) ~ 0 as s ~ ~ ,  we may 
expand Ap as Ap(p; s) =Y~n an(P) s-" for large s 1. In this approximation, we see 
that the terms in Ap, Aft, and Aft are proportional, and then the behaviors of the 
three density differences are expected to be parallel at large s. On the other hand, 
Eq. (13) shows that at the equilibrium, the contributions from Ap and Aft must 
cancel out because of F ( s e ) =  0 (i.e. no contribution of Aft). Therefore, the 
behavior of Ap is first parallel and then opposite to that of Af. The critical point 
(s~) lies between s = Se and s = 0% and is defined as the point of AT = 0 since A0 is 
directly related with the kinetic energy by AT = ~ (p2/2)Ap(p)dp.  During the 
course to a stable equilibrium, the momentum density p(p) changes from 
contraction to expansion (Fig. 2a). In the range of s > &, Ap works to accelerate 
the process in cooperation with Aft, while for Se < S < S~ it works to terminate the 
process against Aft. The reverse change and contribution of Ap (p) will be seen for 
an unstable equilibrium (Fig. 2c). For monotonous repulsions, zip is expected to 
continue its behavior (i.e. expansion) without s~ (Fig. 2b). However, whether s~ 
exists or not depends on the states correlated in the united atom and separated 
atoms limits. 

4. Energy Partitioning 

We here briefly mention a possible partitioning of the energy in this approach. 
Application to the partitioning of the force is also straightforward. 

By expanding the wave function of a system by an appropriate AO basis, we can 
separate the density p (p; s) into one- and two-center parts. 

p ( p ;  S ) = Z P A ( P ;  S)"]-Z Z DAB(p; S). 
A A>B 

(16) 

Since p (p ; oo) = Y.A PA(p ; CO) and DAB (P ; CO) = 0, Ap, Af,  and Aft can be similarly 
partitioned. Then using E(oo) = Y,A EA(O0), we get 

E(s) = • EA(S) + • ~', EA13(S), (17) 
A A>B 

where 

EA(S) = f (pZ/e)AfA(p; S) dp + EA(OO), (lSa) 
.I 

EaB(s) = f (pZ/2) Afia13(p; s) dp. (18b) 

a According to the long-range perturbation theory, it seems to be reasonable to write ~({rl}; s) = 
q.. --n �9 ({rl};oe) S~ bn({rl})s for large s in the r-space. Then the Dirac-Fourier transform results in 

S -n q~({pl}; s) =~({p~}; ~ ) + ~ ,  b'({pl})s  -n and hence Ap(p; ) =~n a , ( p ) s  . 
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In these equations, the energy of a system is partitioned into an atomic contribu- 
tion EA and an interatomic (or bond) contribution EAB. Since the localization 
(towards nuclei) and delocalization (into bond regions) of the electron density p (r) 
may be predominantly reflected by the terms PA and PAB, respectively, the 
parti t ioned energies EA and EAB are expected to give energetic contributions of 
these density behaviors (see also the atom-bond partitioning due to Ruedenberg 
et al. [30]). Although the present decomposition is basis dependent,  it holds for 
both the exact and approximate momentum densities. This point is different from 
the similar formula found in approximate MO methods like CNDO [24]. 

In addition, it is also possible to decompose the energy based on the kinetic energy 
operator.  By separating (p2/2) into several directional parts, the energy is 
represented as the sum of the directional contributions. For example, the parti- 
tioning into the parallel and perpendicular components,  ( p2 /2 )=  

2 (p, /2)  + (p~/2)  + (p~2/2), seems interesting for molecules with symmetry axis. 2 

5. Kinetic Energy in Chemical Bonding 

There are two viewpoints for the origin of chemical (covalent) bonding. One is the 
potential explanation which emphasizes the potential lowering due to the density 
accumulation in the internuclear region as a result of electron sharing (exchange) 
or in-phase overlap of the relevant orbitals (see e.g. [25]). The other is the kinetic 
explanation which attaches importance to the lowering of the kinetic energy 
caused by the extension of the space of the electron movement  from atoms to 
molecule and hence the decrease of the kinetic pressure [26, 27]. The virial 
theorem [15] shows the relative importance of the kinetic contribution for a larger 
separation and of the potential contribution for a shorter separation [28, 29]. 

However,  several authors have reported the significance of the kinetic energy. 
Ruedenberg and Feinberg [30] analyzed the H~- system in detail and emphasized 
the critical role of 7,, (parallel component  of the kinetic energy) in the bonding 
process (see also [31]). Wilson and Goddard  [32] defined the exchange kinetic 
energy T x from the difference between the Hart ree  and G1 [33] wave functions 
and showed the importance of T x (and then the contragradient nature of orbitals) 
as the origin of bonding. Bader and Preston [34] discussed the relation between 
the kinetic energy and the electron density in the r-space by examining the kinetic 
energy density. 

Though these studies were carried out in the r-representation, we can treat this 
subject in a direct manner by use of the p-representation of the electron density 
and the kinetic operator  as has been developed in the preceding sections. Some 
insight on a relationship between the kinetic and total energies is also obtained. 

For the sake of simplicity, let us consider the process of covalent bond formation 
between two atoms. Typical changes in AE and AT curves derived from an 
empirical potential function [35] are depicted in Fig. 2a as a function of s. 3 

2 W e  c a n  a l w a y s  c h o o s e  o n e  axis  in t h e  p - s p a c e  pa ra l l e l  to  s o m e  axis  in t he  r - space .  
3 For diatomic systems, the scale factor s can be replaced by the internuclear distance R. 
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Now, our basic equation is Eq. (4), which shows that AE is given by the product  of 
the integral term of AT and the factor 1/s. Therefore,  the integral term is expected 
to make  AE be parallel to AT, if the sign of the latter remains unchanged. Indeed, 
this parallelism is observed for s > sc in Fig. 2a (and also in Figs. 2b and c). 
Namely,  both AE and AT are negative in this range, as expected f rom the 
contraction of Ate(p) and Ap(p) (see Sect. 3) and f rom the virial relation [15, 
28-31]  at large s. The contraction of p (p) (and the resultant decrease in AT) seem 
to reflect the accumulation of p(r) in the bond region, since it gives rise to a 
smoothed density distribution in the bond direction with a concomitant  decrease 
in the gradient of the r-space wave function in that direction. This may result in a 
predominant  decrease in the component  7",, as pointed out by Ruedenberg  et al. 
[30]. In this stage, the wave function has become less compact  than that of the 
separated atoms with decrease of the kinetic pressure. 

For an intermediate value of s (i.e. s -  so), the wave function (in the r-space) 
becomes compact  as compared  to large s, in part  due to the shrinkage of the 
nuclear f ramework  and in part  to the increase of promotional  hybridization. As a 
result, p (p) expands and A T increases. (For example,  an increase in p-character  of 
an sp hybridization leads to a density increase at high momentum.)  The analyses 
of the lso-g state of the H § 2 system [30] suggest that T• (the component  of the 
kinetic energy perpendicular to the bond axis) is primarily responsible for this 

4 increase. As shown in Fig. 2a, AT is just zero at s = sc and positive for s < s~. 
However ,  AE continues decreasing even for s~ > s (>se) where AT has been 
already positive. This is explained by the term 1/s which enhances the integral 
term as s diminishes. In the range of sc > s > Se, this contribution is larger than the 
partial cancellation in ~ AT(s) ds due to the positive AT, resulting further lowering 
of AE. 5 

When s diminishes further (s ~< Se), the compactness of the wave function grows 
rapidly with simultaneous expansion of p (p). The resultant increase in AT is then 
enough to increase AE through the integral term. Thus the positive AT works to 
terminate the process of the bond formation (or the chemical reaction) at s -- se. 
On bonding, the spherical atomic momen tum density becomes an ellipsoid with its 
shortest axis along the bond direction [13, 36]. 

During the process, the change in AE seems to follow after the change in AT due 
to the term 1/s. Though further investigations are needed, it is suggested that the 
behavior  of AT may predict the succeeding behavior of AE, except for the small s 
region where AT ~ const, but AE-~ oo. In this sense, the substantial role of the 
kinetic energy in chemical bonding is suggested in the present  approach.  
However ,  we expect f rom the density point of view that the kinetic explanation 
will be an aspect of chemical bonding and will be complementary  to the potential  
explanation, since the electron densities p (p) and p (r) are two aspects of the single 
fact. 

4 In the r-space, the critical point sc may be understood as the point where the delocalization of P (r) 
over the molecular space just counterbalances with its localization towards the nuclei. 
5 If the term 1/s is absent, the equilibrium point se obviously coincides with the critical point So 
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6, S u m m a r y  

In this article, we have deve loped  a quant i ta t ive  me thod  which enables  us to 
connec t  the behav ior  of m o m e n t u m  densi ty  with the energy  and  force of a system. 
This has been  achieved through the kinet ic  energy  by using the virial t heorem for a 
un i fo rm scaling process. The  p r e d o m i n a n t  origins of s tabi l izat ion (attraction) and  
des tabi l iza t ion (repulsion) are shown respect ively to be cont rac t ion  and expans ion  

of the m o m e n t u m  densi ty  observed  in the modif ied densi ty  differences A#(p)  and  
AtS(p). Reorgan iza t ion  of the m o m e n t u m  densi ty  and  its effect on  the total  and  
kinet ic  energies  have b e e n  discussed for the process of b o n d  format ion .  A 

decrease of the kinet ic  energy  is impor t an t  to ini t iate  a react ion,  while an increase 
is impor t an t  to t e rmina te  it at equ i l ib r ium geometry .  The  p resen t  s tudy seems to 
give a clue for in te r re la t ion  be tween  the kinet ic  and  potent ia l  explanat ions  of 
chemical  bonding ,  since the behaviors  of p(p) (i.e. con t r ac t ion /expans ion )  are 
closely re la ted with those of p(r) (i.e. de loca l iza t ion/ loca l iza t ion)  th rough the 

D i r a c - F o u r i e r  t ransform.  Quan t i t a t ive  analyses for some systems are now in 
progress.  
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